Pneumocystis carinii cell wall beta-glucans initiate macrophage inflammatory responses through NF-kappaB activation.
نویسندگان
چکیده
beta-Glucans are major structural components of fungi. We have recently reported that the pathogenic fungus Pneumocystis carinii assembles a beta-glucan-rich cell wall that potently activates alveolar macrophages to release pro-inflammatory cytokines and chemokines. Purified P. carinii beta-glucans predictably induce both cytokine generation and associated neutrophilic lung inflammation. Herein, we demonstrate that P. carinii beta-glucan-induced macrophage stimulation results from activation of NF-kappaB. Although analogous to macrophage activation induced by bacterial lipopolysaccharide (LPS), P. carinii beta-glucan-induced macrophage NF-kappaB activation exhibits distinctly different kinetics, with slower induction and longer duration compared with LPS stimulation. Macrophage activation in response to P. carinii beta-glucan was also substantially inhibited with the NF-kappaB antagonist pyrrolidine dithiocarbamate. In addition to different kinetics of NF-kappaB activation, P. carinii beta-glucan and LPS also utilize different receptor systems to induce macrophage activation. Macrophages from Toll-like receptor 4-deficient and wild type mice produced equivalent amounts of tumor necrosis factor alpha when stimulated with P. carinii beta-glucan. However, Toll-like receptor 4-deficient macrophages were refractory to stimulation with LPS. In contrast, MyD88-deficient macrophages exhibited a significant (though partial) blunted response to P. carinii beta-glucan. These data demonstrate that P. carinii beta-glucan acts as potent inducer of macrophage activation through NF-kappaB utilizing cellular receptors and signaling pathways distinct from LPS.
منابع مشابه
Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses.
Macrophage-induced lung inflammation contributes substantially to respiratory failure during Pneumocystis carinii pneumonia. We isolated a P. carinii cell wall fraction rich in glucan carbohydrate, which potently induces TNF-alpha and macrophage-inflammatory protein-2 generation from alveolar macrophages. Instillation of this purified P. carinii carbohydrate cell wall fraction into healthy rode...
متن کاملAlveolar Macrophage–mediated Killing of Pneumocystis carinii f. sp. muris Involves Molecular Recognition by the Dectin-1 β-Glucan Receptor
Innate immune mechanisms against Pneumocystis carinii, a frequent cause of pneumonia in immunocompromised individuals, are not well understood. Using both real time polymerase chain reaction as a measure of organism viability and fluorescent deconvolution microscopy, we show that nonopsonic phagocytosis of P. carinii by alveolar macrophages is mediated by the Dectin-1 beta-glucan receptor and t...
متن کاملPneumocystis cell wall β-glucan stimulates calcium-dependent signaling of IL-8 secretion by human airway epithelial cells
BACKGROUND Respiratory failure secondary to alveolar inflammation during Pneumocystis pneumonia is a major cause of death in immunocompromised patients. Neutrophil infiltration in the lung of patients with Pneumocystis infection predicts severity of the infection and death. Several previous studies indicate that airway epithelial cells release the neutrophil chemoattractant proteins, MIP-2 (rod...
متن کاملPneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism.
Infiltration of the lungs with neutrophils promotes respiratory failure during severe Pneumocystis carinii (PC) pneumonia. Recent studies have shown that alveolar epithelial cells (AECs), in addition to promoting PC attachment, also participate in lung inflammation by the release of cytokines and chemokines. Herein, we demonstrate that a PC beta-glucan rich cell wall isolate (PCBG) stimulates t...
متن کاملCharacterization of Pneumocystis carinii PHR1, a pH-regulated gene important for cell wall Integrity.
Pneumocystis carinii remains an important opportunistic fungal pathogen causing life-threatening pneumonia in patients with AIDS and malignancy. Currently, little is known about how the organism adapts to environmental stresses and maintains its cellular integrity. We recently discovered an open reading frame approximately 600 bp downstream of the region coding GSC-1, a gene mediating beta-gluc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 27 شماره
صفحات -
تاریخ انتشار 2003